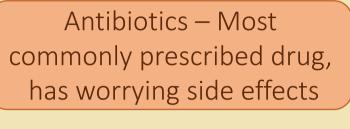
Frequent antibiotic prescription and risk of encephalopathy related hospitalisation among people living with dementia: a population-based cohort study


Wilson W. S. Hui, Kai Lin Chen^{1,2}, Celine S. L. Chui^{1,3,4}, Ian C. K. Wong^{1,5,6}

Affiliation: ¹: Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong, China; ²: Laboratory of Data Discovery for Health (D²4H), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; ³: School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; ⁴:WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1/F Patrick Manson Building (North Wing), 7 Sassoon Road, Hong Kong SAR, China; 5: The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China; 6: Research Department of Practice and Policy, UCL School of Pharmacy, London, UK

INTRODUCTION

Neurodegenerative and causes behavioral and psychiatric symptoms

Prone to neurotoxicity ¹ Higher risk of developing encephalopathy¹ Hospitalization-related delirium risk is high

Encephalopathy types (type 1: seizure vs How does antibiotics

prescription affect encephalopathy

- Known side effects include neurotoxicity, delirium and encephalopathy³ Unclear risk in dementia special population - Study in England showed frequent antibiotics prescription can harm patients and increase risk of hospitalization²
- type 2: psychosis) ³ Current literature suggest seizure-high risk antibiotics include penicillin, cephalosporin, tetracyclines and aminoglycosides, while psychosis-risked antibiotics include macrolides, quinolones, sulphonamides, tetracyclines and aminoglycosides ³

OBJECTIVES

- To evaluate the current antibiotic prescribing patterns in Hong Kong among people living with dementia
- To evaluate the association between frequency of high-risk antibiotic prescriptions and the risk of hospitalization due to seizure (type 1 encephalopathy) among people living with dementia
- To evaluate the association between frequency of high-risk antibiotic prescriptions and the risk of hospitalization

Figure 1: Subject selection

Patient diagnosed with Excluded (n= 16,786) dementia 2004-2019 1. Patients with first diagnosis age (randomly select 30%) <65 years old (n= 1,622) (n= 46,400) 2. Patients with no antibiotics record (n= 1,160) Study population 3. Non-regular user (<3 years (n= 29,614) continuous record) (n= 14,004) Number of antibiotic Rx Systemic seizure-risked antibiotics (n=1,121,030) (n= 623,950) Quartile 1: Quartile 2: Quartile 3: Quartile 4: (n=123,698) (n=165,882) (n=171,715) (n=162,655) Systemic psychosis-risked antibiotics (n= 99,879)

due to psychosis (type 2 encephalopathy) among people living with dementia

Quartile 1: (n= 21,880)	Quartile 2:	Quartile 3:	Quartile 4:
(n= 21,880)	(n= 26,497)	(n= 24,922)	(n= 26,580)

METHODOLOGY

Patients with dementia diagnosis 2004-2019 in CDARS is identified, 30% of which is randomly selected in this study (Figure 1)

- 1. First diagnosis age \geq 65years old
- 2. Patients with at least one antibiotic prescription record
- 3. Regular user of healthcare services Antibiotic prescriptions by systemic routes are grouped by antibiotic class
- High risk classes are selected for each analysis arm (Seizure vs Psychosis)³ **Frequency count** of exposure is total number of antibiotic prescriptions received 182 days before index antibiotic (figure 2)

Figure 2: Exposure frequency count

1	82 days exposure count: 2	30 days Follow-up
182 days exposure cou	30 days nt: 1 Follow-up]]

Outcome follow-up period will be the 30 days after the index antibiotic (figure 2)

Quartiles are divided by the frequency of exposure into 4 subgroups with increasing frequency

Propensity score was estimated by logistic regression, include age, sex, index year, Charlson Comorbidity Index Score (CCS) and prior encephalopathy history (table 1)

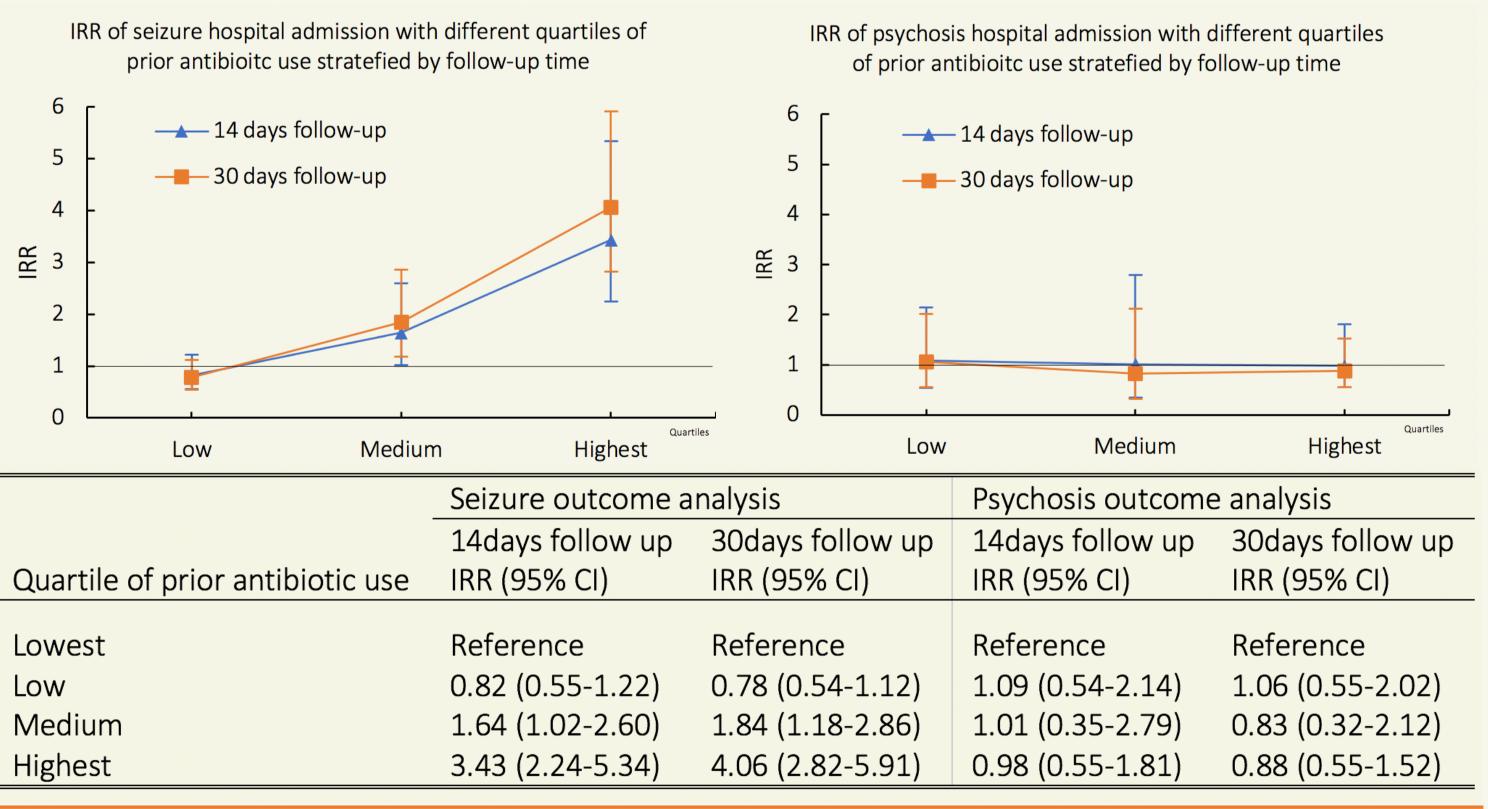
Risk is calculated with negative binomial regression model expressed in IRR (adjust by propensity score) (figure 3)

Table 1: Quartiles baseline characteristics

Seizure outcome analysis:

		Quartile of prior antibiotic use (Frequency of script)				
		Whole cohort	Lowest (0-2)	Low (3-8)	Medium (9-19)	Highest (20+)
	Number of scripts	623950	123698	165882	171715	162655
	Age (mean)	86.2	86.1	86.5	86.5	85.8
	First Dx age (mean)	83.6	83.1	83.2	83.1	82.8
	Women (%)	254132 (40.7)	42956 (34.7)	62354 (37.6)	70699 (41.2)	78123 (48.0)
	CCS					
	Lowest(0)(%)	86231 (13.8)	20701 (16.7)	24650 (14.9)	23031 (13.4)	17849 (11.0)
	Low(1-2) (%)	290838 (46.6)	59550 (48.1)	78109 (47.1)	79021 (46.0)	74158 (45.6)
	Mid(3-4) (%)	167174 (26.8)	30117 (24.3)	42951 (25.9)	47028 (27.4)	47078 (28.9)
	High(5-6) (%)	50958 (8.2)	8500 (6.9)	12674 (7.6)	14165 (8.2)	15619 (9.6)
	Highest(7+)(%)	28749 (4.6)	4830 (3.9)	7498 (4.5)	8470 (4.9)	7951 (4.9)
	Seizure history	12338 (19.8)	1938 (15.7)	2949 (17.8)	3466 (20.2)	3985 (24.5)

Psychosis outcome analysis:


-			Quartile of prior antibiotic use (Frequency of script)				
		Whole cohort	Lowest (0)	Low (1-2)	Medium (3-6)	Highest (7+)	
	Number of scripts	99879	21880	26497	24922	26580	
	Age (mean)	85.9	86.0	86.1	86.0	85.4	
	First Dx age (mean)	83.6	82.8	82.8	82.7	82.3	
	Women (%)	57751(57.8)	13411(61.3)	15831(59.7)	14257(57.2)	14252(53.6)	
	CCS						
	lowost(0)(%)	14066 (14 1)	2271 (15 1)	2001 (11 7)	2507 (14 1)	2204 (12 4)	

					14000 (14.1)	5574 (15.4)	5651 (14.7)	5507 (14.1)	5254 (12.4)
182 days exposure count: 0	Follow-up censor	30 days 182 days exposure count: 0 Follow-u	s up	Low(1-2) (%)	46342 (46.4)	10336 (47.2)	12498 (47.2)	11547 (46.3)	11961 (45.0)
	at new Rx			Mid(3-4) (%)	27076 (27.1)	5631 (25.7)	6976 (26.3)	6742 (27.1)	7727 (29.1)
				High(5-6)(%)	7800 (7.8)	1632 (7.5)	2001 (7.6)	2011 (8.1)	2129 (8.0)
			Time	Highest(7+) (%)	4595 (4.6)	907 (4.1)	1131 (4.3)	1115 (4.5)	1469 (5.5)
1 st Rx 2	2 nd Rx 3 rd Rx	4 th Rx Ar	ntibiotic prescription	Psychosis history	48357 (48.4)	10171 (46.5)	12785 (48.3)	12252 (49.2)	13149 (49.5)
	2 ¹⁰ NX 5 ¹⁰ NX	4".KX AI	intibiotic prescription						

RESULTS

- Risk of seizure increase sharply along with quartiles of higher exposure Û frequencies, achieved significance in medium quartile and was even stronger for highest quartile. Slightly more significant association for 30 days follow-up period than in 14 days. Risk of seizure was over 4 times as likely compared to lowest quartile (IRR 4.06 [95%CI 2.82- 5.91]).
- 29
- No association was found for psychosis, in primary analysis and all sensitivity analysis. Seizure IRR remained significant in all sensitivity analysis in highest quartile comparison.
- Younger patient subgroup (age 65-84) displayed stronger association between highest antibiotic prescriptions frequency and seizure risk. Older subgroup (age \geq 85) showed less variations but consistently significant. (table 2)

Figure 3: IRR of encephalopathy between quartiles

Table 2: Sensitivity analysis IRRs

DISCUSSION

CONCLUSION

	Quartile of prior antibiotic use						
		Seizure outcome a	analysis	Psychosis outcom	e analysis		
Sub-group	Lowest	Medium Highest		Medium	Highest		
		IRR (95%CI)	IRR (95%CI)	IRR (95%CI)	IRR (95%CI)		
Age < 85 years old	Ref	1.56 (0.85-2.83)	5.00 (2.91-8.79)	1.67 (0.48-5.55)	1.33 (0.66-2.81)		
Age \geq 85 years old	Ref	2.22 (1.28-3.82)	2.41 (1.51-3.93)	0.32 (0.04-2.17)	0.53 (0.24-1.68)		
No COPD/ Cancer	Ref	1.36 (0.76-2.41)	3.90 (2.42-6.38)	0.81 (0.24-2.60)	1.16 (0.56-2.52)		
365 days exposure count	Ref	1.50 (0.87-2.56)	4.48 (3.08-7.22)	0.77 (0.20-2.80)	0.66 (0.37-1.15)		
All-cause hospitalisation	Ref	0.91 (0.85-0.97)#	1.40 (1.35-1.46)#				

[#]: IRR of all-cause hospitalisation as outcome

REFERENCE

1. Grill MF, Maganti RK. Neurotoxic effects associated with antibiotic use: management considerations. Br J Clin Pharmacol. Sep 2011;72(3):381-93. doi:10.1111/j.1365-2125.2011.03991.x

2. Van Staa TP, Palin V, Li Y, Welfare W, Felton TW, Dark P, et al. The effectiveness of frequent antibiotic use in reducing the risk of infection-related hospital admissions: results from two large population-based cohorts. BMC Medicine. 2020;18(1):40.

3. Bhattacharyya S, Darby RR, Raibagkar P, Gonzalez Castro LN, Berkowitz AL. Antibiotic-associated encephalopathy. Neurology. 2016;86(10):963-71.

Strong dose-response was found between risk of seizure and frequency of antibiotic prescriptions the patient received. Depending on age and prior antibiotic received, patients with dementia can experience up to 4-5 times as likely risk of seizure compared to those with least antibiotics received.

For younger patients, caution should be put on limiting the maximum frequency of antibiotics a patient should be prescribed. Whereas for older patients, due to higher sensitivity to seizure risk, should be cautious for any frequency of antibiotic prescription

Encephalopathy is a serious health concern, especially in patients with impaired brain function, like those with dementia. Benefit of some antibiotic indications might not be justified with such risk.

- Seizure might lead to further clinical complications and jeopardize patients' morbidity and quality of life
- Future research direction on long term association, possible mechanism of association and mode of association