Common Data Protocol, version 3, 2022-Oct-31

Cardiovascular risk in patients with rheumatoid arthritis receiving targeted synthetic and biological disease-modifying antirheumatic drugs: a multi-centre retrospective cohort study

Authors:

Xinning Tong, PhD^{1,2#}, Chin-Yao Shen, MClinPharm^{3#}, Ha-Lim Jeon, PhD^{4#}, Yihua Li, Msc¹, Ju-Young Shin, PhD^{5,6,7}, Xue Li, PhD^{1,8,9}*, Edward Chia-Cheng Lai, PhD³

Authors affiliations:

¹ Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

² Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China

³ School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan

⁴ School of Pharmacy, Jeonbuk National University, Jeonju, South Korea

⁵ School of Pharmacy, Sungkyunkwan University, Suwon, South Korea

⁶Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea

⁷ Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for

Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea

⁸ Centre for Safe Medication Practice and Research, Department of Pharmacology and

Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China

⁹ Laboratory of Data Discovery for Health (D²4H), Hong Kong Science and Technology Park, Sha Tin, Hong Kong SAR, China.

[#] Co-first authors contributed equally to this article.

Background

Biological and targeted synthetic DMARDs (b/tsDMARDs) unfolds the new chapter of RA management and being moving towards to be the standard treatment¹ for patients who have inadequate responses to conventional synthetic DMARDs². The mortality of *RA patients* is 1.2 to 3.0 folds greater compared with the general population, which *half of the excess mortality are attributed to cardiovascular (CV) diseases*^{3,4}. It is commonly recognized that *chronic inflammation* alters body composition, insulin sensitivity and lipid profile, of which *mediates premature atherosclerosis*^{3,5-7}. Abundance literature have suggested the **beneficial CV effect** of bDMARDs, especially the tumor necrosis factor inhibitor (*TNFi*), through the *reduction of systemic inflammation*⁸⁻¹². However, the effects of other bDMARDs such as *IL-6 inhibitor*, still *paradoxical*¹³. Studies found IL-6 inhibitors increased circulating low-density lipoproteins (LDL) levels¹⁴ but not the risk of major cardiovascular events^{11,15,16}.

Janus Kinase inhibitors [JAKi, tofacitinib (in 2012), baricitinib (in 2018) and upadacitinib (in 2019)] are typical and the only category of tsDMARDs approved for the management of RA^{17,18}. JAKi are small molecules targeting the intracellular transduction pathways, the Janus kinases/signal transducers, and activators of transcription (JAK/STAT), which are essential signals in down streaming inflammatory molecules with wide spectrum of cytokines^{19,20}. Comparing to bDMARDs, tsDMARDs are with lower rates of immunogenicity and can be administrated orally ²¹, which is a more *convenient dispense route* that potentially increase patients compliance. Despite its safety and convenience of administration, tsDMARDs neither not be free of side effects risk. JAK/STAT pathway is deeply involved in several largely unknown regulatory networks influencing hundreds of cytokines, as a result, inhibiting this pathway may in addition dysregulating inner organs, such as cardiovascular system¹³. What's more, considering of JAKi is a small compound that leads to blocking the physiological response of hundreds of genes¹³, the effects of tsDMARDs on cardiovascular system are still not conclusive^{22,23}. Limited evidence suggested that JAKi-based therapy positively modifies the risk of cardiovascular disease^{24,25}, while a growing body of literature indicated that JAKi adversely affect several cardiovascular risk factors (such as serum lipid profile and platelet count) and potentially increase thrombotic risk ²⁶⁻ 29.

To our knowledge, current evidences on cardiovascular events and tsDMARDs are from RCT studies or non-comparative observational studies without conclusive outcomes and there are limited studies^{11,30} comparing the risk of cardiovascular events with tsDMARDs to other bDMARDs through real-world data. Whether JAKi would cause increased risk of cardiovascular events and whether doctors should evaluate the risk of cardiovascular events before they prescribe this class of drug to RA patients need further investigation in real-world practice.

Hypothesis to be tested

There is *scattered evidence from current literature* comparing the cardiovascular events (CVE) among b/tsDMARDs. We propose to evaluate and compare *the risk of CVE* among patients with RA firstly treated by b/tsDMARDs in real-world clinical settings. We hypotheses that tsDMARDs and IL-6 inhibitors have higher risk of CVE compared to TNFi bDMARDs, especially in patients with exist cardiovascular risk factors (old age, hypertension, obesity, diabetes etc.).

Study objectives

- 1. To describe the overall incidence rate of CVE among patients with RA using multiple databases in Asia Pacific Areas
- 2. To compare the risk of CVE among patients with RA receiving JAK inhibitors, IL-6 inhibitors and TNF inhibitors, with TNF inhibitors as reference group, using cohort study design and international electronic medical records databases

Methods

Data source from Asia-Pacific areas

Hong Kong Clinical Data Analysis and Reporting System (CDARS) is the territory-wide EHR database developed and managed by the HA of Hong Kong. HA³¹ is a unique statutory body that manages all public hospitals and their ambulatory clinics serving a population of 7.4 million through 43 hospitals and institutions, 49 specialist outpatient clinics, and 73 general outpatient clinics in HK. EHRs including demographics, date of registered death and cause, date of hospital admission and discharge, prescriptions, diagnoses, immunization history etc. are all centralized in CDARS routinely for research and audit purposes. Coding accuracy and records quality of CDARS has been demonstrated through many high-quality epidemiology and health service studies published using this database ^{32,33}. Patient records are anonymised to protect patient confidentiality and identity.

Taiwan National Health Insurance Research Database (NHIRD) exemplifies a population-level data source for generating real-world evidence to support clinical decisions and health care policy-making. By the end of year 2014, NHIRD covered 99.9% of the Taiwanese population. Up to year 2018, over 2,700 peer-reviewed studies have been published using NHIRD data³⁴.

Korea Health Insurance and Review Assessment (HIRA), also called National Health Insurance (NHI) data covered all citizens in South Korea. HIRA contains comprehensive and rich information pertaining to healthcare services such as treatments, pharmaceuticals, procedures, and diagnoses. HIRA provides a high value in answering a wide spectrum of research questions in health research encompassing outcomes, public health, epidemiology, biostatistics, health informatics and health economics³⁵.

We will use distributed network approach to analyse the data from different sites and pool the result using meta-analysis. Data source and estimated number of patients are detailed in

Data	Country/	Patient	Follow-up	Number of	Estimated	Estimated	Estimated
source	regions	recruitment	end date	patients with	number of	number of	number of
		period		RA	patients	patients	patients
					using TNFi ^a	using ILi ^a	using
							JAKi ^a
CDARS	Hong	2010-2020	12-31-2020	17,628	598	162	294
	Kong						
NHIRD	Taiwan	2010-2018	12-31-2018	396,485	2775	508	545
HIRA	South	2010-2020	12-31-2020	2,196,992	2476	599	732
	Korea						

 Table 1 Data source and estimated number of patients

Note: ^a Excluded patients with systemic lupus erythematosus, psoriasis, spondylarthritis, multiple sclerosis, and inflammatory bowel disease

Study design

This will be a retrospective cohort study based on multiple population-based electronic medical records databases. Study population will be patients with a recorded diagnosis of RA [identified with ICD-9-CM codes (714.0); ICD-10 M05 and M06] between 2010 and 2020 (or feasible timespan) for each database. We will further identify patients who have not responded to the first-line treatment (csDMARDs) and then first treated with b/tsDMARDs (biologics naïve patients) as the target population of the cohort analysis. Patients with other autoimmune diseases (systemic lupus erythematosus, psoriasis, spondylarthritis, and inflammatory bowel disease) will be excluded to avoid data contamination. Based on modes of action, biological and targeted synthetic DMARDs assessed in this study includes **TNF inhibitors** (TNFi)(etanercept, infliximab, adalimumab, certolizumab pegol and golimumab), **interleukin-6 inhibitors** (IL-6i) (tocilizumab, sarilumab), and **JAK inhibitors** (JAKi) (tofacitinib, baricitinib and upadacitinib), whichever available in each data base.

Targeted patients will be followed-up from the index date (prescription start date of the first b/tsDMARDs treatment) until censoring - occurrence of outcome, treatment discontinuation (treatment gap more than 6 months), death, treatment switch to another b/tsDMARDs with different modes of actions, or study end date (December 31, 2020), whichever comes first.

Outcome

The primary outcome of interest is the composite of first hospitalized CVE, after b/tsDMARDs treatment. CVEs considered in this study include coronary heart diseases, stroke (ischemic or hemorrhagic), heart failure (HF), VTE, systemic embolism (SE) (ICD-9-CM and ICD-10-CM codes are listed in appendix table)^{11,36}.

Statistical analysis

Crude incidence rates of CVE with 95% confidential interval will be estimated for each group (TNFi, ILi and JAKi) using Poisson distribution. Using *TNFi as reference group*, we will use Cox proportional-hazards models or generalised linear regression model (Poisson distribution) to adjust confounding factors (including age, sex, disease duration and Charlson Comorbidity Index) and estimate the Hazards Ratios (HRs)/Incidence Rate Ratios (IRRs) of cardiovascular events for ILi and JAKi, respectively. Subjects' age, sex, disease duration (defined as years since RA diagnosis to the first treatment of b/tsDMARDs); stage of RA [early RA (disease duration less than or equal to 2 years) and established RA (disease duration longer than 2 years)], medical histories, Charlson Comorbidity Index (CCI), and recent one-year medication usage [csDMARDs, non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroid, and cardiovascular drugs] before index date are covariates to be reported as baseline characteristics.

We will aggregate HR/IRR estimates results from each data resources with meta-analytic estimates using a random-effects meta-analysis ^{37,38}. Pooled analyses and visualisation of crude and adjusted IRRs will be conducted through Review Manager (RevMan) (Computer programme, Version 5.4. The Cochrane Collaboration, 2020). We are going to conduct data analysis via R (version 4.1.4, R Foundation for Statistical Computing, Vienna, Austria) and SAS (version 9.4, SAS Institute, Cary, NC, USA).

Sample size estimation

Sample size of the proposed study is calculated with the software authorized by Open Source Epidemiologic Statistics for Public Health³⁹. We assume the percent of CVE in TNFi treatment group is around 7% 8,11,40 . To detect a relative risk of 1.2 30,41 in the CVE outcome with 80% power, we estimated the total subjects should be around 16,836 with equal sample size (n=5612) in each treatment group.

References:

1. Cuadrado MJ, Sciascia S, Bosch X, Khamashta MA, Ramos-Casals M. Is it time for biosimilars in autoimmune diseases? *Autoimmun Rev* 2013; **12**(10): 954-7.

2. Smolen JS, Landewé RBM, Bijlsma JWJ, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. *Ann Rheum Dis* 2020; **79**(6): 685.

3. Kang EH, Liao KP, Kim SC. Cardiovascular Safety of Biologics and JAK Inhibitors in Patients with Rheumatoid Arthritis. *Current Rheumatology Reports* 2018; **20**(7): 42.

4. Maradit Kremers H, Nicola P, Crowson C, Ballman K, Gabriel S. Cardiovascular Death in

Rheumatoid Arthritis - A Population Based Study. Arthritis Rheum 2005; 52: 722-32.

5. Robertson J, Peters MJ, McInnes IB, Sattar N. Changes in lipid levels with inflammation and therapy in RA: a maturing paradigm. *Nat Rev Rheumatol* 2013; **9**(9): 513-23.

6. Grimble RF. Inflammatory status and insulin resistance. *Curr Opin Clin Nutr Metab Care* 2002; **5**(5): 551-9.

7. Chung CP, Oeser A, Solus JF, et al. Prevalence of the metabolic syndrome is increased in rheumatoid arthritis and is associated with coronary atherosclerosis. *Atherosclerosis* 2008; **196**(2): 756-63.

8. Ljung L, Askling J, Rantapää-Dahlqvist S, Jacobsson L. The risk of acute coronary syndrome in rheumatoid arthritis in relation to tumour necrosis factor inhibitors and the risk in the general population: a national cohort study. *Arthritis Res Ther* 2014; **16**(3): R127.

9. Barnabe C, Martin BJ, Ghali WA. Systematic review and meta-analysis: anti-tumor necrosis factor α therapy and cardiovascular events in rheumatoid arthritis. *Arthritis Care Res (Hoboken)* 2011; **63**(4): 522-9.

10.Day AL, Singh JA. Cardiovascular Disease Risk in Older Adults and Elderly Patients with Rheumatoid Arthritis: What Role Can Disease-Modifying Antirheumatic Drugs Play in Cardiovascular Risk Reduction? *Drugs Aging* 2019; **36**(6): 493-510.

11.Singh S, Fumery M, Singh AG, et al. Comparative Risk of Cardiovascular Events With Biologic and Synthetic Disease-Modifying Antirheumatic Drugs in Patients With Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. *Arthritis Care Res (Hoboken)* 2020; **72**(4): 561-76.

12.Ozen G, Pedro S, Michaud K. The Risk of Cardiovascular Events Associated With Disease-modifying Antirheumatic Drugs in Rheumatoid Arthritis. *J Rheumatol* 2020: jrheum.200265.

13.Kotyla PJ, Islam MA, Engelmann M. Clinical Aspects of Janus Kinase (JAK) Inhibitors in the Cardiovascular System in Patients with Rheumatoid Arthritis. *Int J Mol Sci* 2020; **21**(19): 7390. 14.Smolen JS, Beaulieu A, Rubbert-Roth A, et al. Effect of interleukin-6 receptor inhibition with

tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. *Lancet* 2008; **371**(9617): 987-97.

15.Castagné B, Viprey M, Martin J, Schott AM, Cucherat M, Soubrier M. Cardiovascular safety of tocilizumab: A systematic review and network meta-analysis. *PloS one* 2019; **14**(8): e0220178. 16.Kim SC, Solomon DH, Rogers JR, et al. Cardiovascular Safety of Tocilizumab Versus Tumor Necrosis Factor Inhibitors in Patients With Rheumatoid Arthritis: A Multi-Database Cohort Study. *Arthritis Rheumatol* 2017; **69**(6): 1154-64.

17. Louder AM, Singh A, Saverno K, et al. Patient Preferences Regarding Rheumatoid Arthritis Therapies: A Conjoint Analysis. *Am Health Drug Benefits* 2016; **9**(2): 84-93.

18.U.S. Food and Drug Administration. FDA-Approved Drugs.

https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process (accessed April 9 2021).

19. Hodge JA, Kawabata TT, Krishnaswami S, et al. The mechanism of action of tofacitinib - an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. *Clin Exp Rheumatol* 2016; **34**(2): 318-28. 20. Massalska M, Maslinski W, Ciechomska M. Small Molecule Inhibitors in the Treatment of Rheumatoid Arthritis and Beyond: Latest Updates and Potential Strategy for Fighting COVID-19. *Cells* 2020; **9**(8).

21.Wendling D, Prati C. Targeted synthetic disease-modifying antirheumatic drugs in spondyloarthritis. *Immunotherapy* 2017; **9**(3): 221-3.

22. European Medicines Agency. Xeljanz to be used with caution for all patients at high risk of blood clots (EMA/584781/2019), 2019. <u>https://www.emaeuropa.eu/en/documents/referral/xeljanz-article-20-procedure-xeljanz-be-usedcaution-all-patients-high-risk-blood-clots.en.pdf</u> (accessed November 11 2020).

23.FDA Drug Safety Communication. FDA approves Boxed Warning about increased risk of blood clots and death with higher dose of arthritis and ulcerative colitis medicine tofacitinib (Xeljanz, Xeljanz XR). November 22 2019. <u>https://www.fda.gov/drugs/drug-safety-and-availability/fda-approves-boxed-warning-about-increased-risk-blood-clots-and-death-higher-dose-arthritis-and</u>.

24.Kume K, Amano K, Yamada S, et al. Tofacitinib improves atherosclerosis despite up-regulating serum cholesterol in patients with active rheumatoid arthritis: a cohort study. *Rheumatology International* 2017; **37**(12): 2079-85.

25. Charles-Schoeman C, Wicker P, Gonzalez-Gay MA, et al. Cardiovascular safety findings in patients with rheumatoid arthritis treated with tofacitinib, an oral Janus kinase inhibitor. *Semin Arthritis Rheum* 2016; **46**(3): 261-71.

26. Smolen JS, Pangan AL, Emery P, et al. Upadacitinib as monotherapy in patients with active rheumatoid arthritis and inadequate response to methotrexate (SELECT-MONOTHERAPY): a randomised, placebo-controlled, double-blind phase 3 study. *Lancet* 2019; **393**(10188): 2303-11. 27. Taylor PC, Keystone EC, van der Heijde D, et al. Baricitinib versus Placebo or Adalimumab in Rheumatoid Arthritis. *N Engl J Med* 2017; **376**(7): 652-62.

28. Verden A, Dimbil M, Kyle R, Overstreet B, Hoffman KB. Analysis of Spontaneous Postmarket Case Reports Submitted to the FDA Regarding Thromboembolic Adverse Events and JAK Inhibitors. *Drug Saf* 2018; **41**(4): 357-61.

29.Karpouzas GA, Ormseth SR, Hernandez E, Budoff MJ. Biologics May Prevent Cardiovascular Events in Rheumatoid Arthritis by Inhibiting Coronary Plaque Formation and Stabilizing High-Risk Lesions. *Arthritis Rheumatol* 2020; **72**(9): 1467-75.

30.Xie W, Huang Y, Xiao S, Sun X, Fan Y, Zhang Z. Impact of Janus kinase inhibitors on risk of cardiovascular events in patients with rheumatoid arthritis: systematic review and meta-analysis of randomised controlled trials. *Ann Rheum Dis* 2019; **78**(8): 1048-54.

31. Hong Kong Hospital Authority. Clusters, Hospitals & Institutions. 2020.

https://www.ha.org.hk/visitor/ha_visitor_index.asp?Content_ID=10036&Lang=ENG&Dimension=100& Parent_ID=10004 (accessed March 11 2021).

32. Wong AYS, Root A, Douglas IJ, et al. Cardiovascular outcomes associated with use of clarithromycin: population based study. *BMJ* 2016; **352**: h6926.

33.Li X, Blais JE, Wong ICK, et al. Population-based estimates of the burden of pneumonia hospitalizations in Hong Kong, 2011-2015. *Eur J Clin Microbiol Infect Dis* 2019; **38**(3): 553-61.
34.Lin L-Y, Warren-Gash C, Smeeth L, Chen P-C. Data resource profile: the National Health Insurance and the provide the provide the second second

Research Database (NHIRD). *Epidemiol Health* 2018; **40**: e2018062-e. 35.Kim J-A, Yoon S, Kim L-Y, Kim D-S. Towards Actualizing the Value Potential of Korea Health

Insurance Review and Assessment (HIRA) Data as a Resource for Health Research: Strengths, Limitations, Applications, and Strategies for Optimal Use of HIRA Data. *J Korean Med Sci* 2017; **32**(5): 718-28.

36.Shin JY, Roughead EE, Park BJ, Pratt NL. Cardiovascular safety of methylphenidate among children and young people with attention-deficit/hyperactivity disorder (ADHD): nationwide self controlled case series study. *BMJ* 2016; **353**: i2550.

37.DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials* 1986; **7**(3): 177-88. 38.Suchard MA, Schuemie MJ, Krumholz HM, et al. Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis. *Lancet* 2019; **394**(10211): 1816-26.

39. Sullivan KM. Sample Size:X-Sectional, Cohort, & Randomized Clinical Trials.

https://www.openepi.com/SampleSize/SSCohort.htm (accessed April 13 2021).

40.Naranjo A, Sokka T, Descalzo MA, et al. Cardiovascular disease in patients with rheumatoid arthritis: results from the QUEST-RA study. *Arthritis Res Ther* 2008; **10**(2): R30.

41.Desai RJ, Pawar A, Weinblatt ME, Kim SC. Comparative Risk of Venous Thromboembolism in Rheumatoid Arthritis Patients Receiving Tofacitinib Versus Those Receiving Tumor Necrosis Factor Inhibitors: An Observational Cohort Study. *Arthritis Rheumatol* 2019; **71**(6): 892-900.

	ICD-9-CM	ICD-10-CM	
Autoimmune disease			
Rheumatoid arthritis	714.0	M05, M06	
Systemic lupus erythematosus	710.0	M32	
Inflammatory Bowel Disease	555, 556	K50, K51	
Multiple sclerosis	340	G35	
Psoriasis	696	L40	
Spondylarthritis	720.0	M45	
Cardiovascular events			
Venous thromboembolic	453.0, 453.1, 453.2, 453.3, 453.4, 453.8, 453.9, 415.1, 451.1, 451.2, 451.9, 451.81, 453.5	180, 181, 182, 126	
Systemic embolism	444	I74	
Congestive heart failure	428, 398.91, 402.01, 402.11, 402.91, 404.01, 404.11, 404.91, 404.03, 404.13, 404.93	1099, 1110, 1130, 1132, 1255, 1420, 1425-429, 143, 150, P290	
Acute coronary heart disease	410, 411, 413	I20-I24	
Stroke	430, 431, 433.x1, 434.x1, and 436	160, 161, 1630-1635, 164, 1678	
Baseline comorbidities			
Atrial fibrillation/flutter	427.3	I48	
Chronic ischaemic heart disease	412, 414	I25	
Cerebrovascular disease	430-438	I60-I69, G45-46, H340	
Chronic obstructive pulmonary disease	490-496, 500-505, 506.4	J40-47, , J60-67, J684, J701, J703	
Chronic renal failure	582, 585, 586, 588, 583.0, 583.1, 583.2, 583.4, 583.6, 583.7	N032-037, N052-057, N18-19 N250, Z490-492, Z940, Z992	
Dementia	290	F00-03, F051, G30, G311	
Diabetes	250	E10-14	
Hypertension	401-405,437.2	I10 - I16	
Hyper lipoid	272.0-272.4	E780 - E785	
Liver disease	571.2, 571.4, 571.5, 571.6, 456.0, 456.1, 456.2, 572.2, 572.3, 572.4, 572.8	K70, K713-715, K717, K72-74 K76	
Malignancy	140-149, 150-159, 160-165, 170-172, 174-176, 179-189, 190-195, 200-208	C00–C26, C30–C34, C37– C41, C43, C45–C58, C60– C76, C81–C85, C88, C90–C97 I70, I71, I731, I738, I739, I77	
Peripheral vascular disease	441, 443.9, 785.4	170, 171, 1731, 1738, 1739, 177 1790, 1792, K551, K558, K559 Z958, Z959	

Supplementary Table 1. Classification of Diseases, Ninth & Tenth Revision, Clinical Modification (ICD-9-CM & ICD-10-CM) codes of included diseases

Comorbidities for Charlson Comorbidity Index

Acquired Immune Deficiency

B20-24

Acquired Immune Deficiency Syndrome (AIDS)	042	B20-24
Cerebrovascular disease	430-438	I60-I69, G45-46, H340
Chronic obstructive pulmonary disease	490-496, 500-505, 506.4	J40-47, , J60-67, J684, J701, J703
Chronic renal failure	582, 585, 586, 588, 583.0, 583.1, 583.2, 583.4, 583.6, 583.7	N032-037, N052-057, N18-19, N250, Z490-492, Z940, Z992
Dementia	290	F00-03, F051, G30, G311
Diabetes without chronic complication	250.0, 250.1, 250.2, 250.3, 250.7	E100, E101, E106, E108-111, E116, E118-E121, E126, E128- 131, E136, E138-141, E146, E148, E149
Diabetes with chronic complication	250.4, 250.5, 250.6	E102-105, E107, E112-115, E117, E122-125, E127, E132- 135, E137, E142-145, E147
Myocardial infarction	410	121, 122, 1252

Mild liver disease	571.2, 571.4, 571.5, 571.6	B18, K700-703, K713-715, K717, K73, K74, K760, K762- 764, K768, K769, Z944
Moderate-severe liver disease	456.0, 456.1, 456.2, 572.2, 572.3, 572.4, 572.8	K704, K72, K761-768, I85
Metastatic solid tumour	196-199	C77-80
Malignancy	140-149, 150-159, 160-165, 170-172, 174-176, 179-189, 190-195, 200-208	C00–C26, C30–C34, C37– C41, C43, C45–C58, C60– C76, C81–C85, C88, C90–C97
Paralysis	342, 344.1	G041, G114, G801, G802, G81, G82, G830-834, G839
Peripheral vascular disease	441, 443.9, 785.4	170, 171, 1731, 1738, 1739, 1771, 1790, 1792, K551, K558, K559, 2958, 2959
Rheumatoid arthritis and other inflammatory polyarthropathies	710.0, 710.1, 710.4, 714.0, 714.1, 714.2, 714.81, 725	M05, M06, M315, M32-34, M351, M353, M360
Ulcers	531-534	K25-28

Supplementary Table 2. Drug identification

	Hong Kong, drug molecular		
RA related drugs			
	etanercept		
	infliximab		
TNFi	adalimumab		
	certolizumab pegol		
	golimumab		
H /2	tocilizumab		
IL-6i	sarilumab		
	tofacitinib		
JAKi	baricitinib		
	upadacitinib		
	methotrexate		
	Hydroxychloroquine		
csDMARDs	leflunomide		
	sulphasalazine		
	triamcinolone, betamethasone		
	dexamethasone, fludrocortisone		
corticosteroid	hydrocortisone, methylprednisolone		
	prednisolone		
	celecoxib, diclofenac, etoricoxib		
NSAIDs	febuxostat, piroxicam, ibuprofen		
	indomethacin, sulindac, mefenamic acid		
	naproxen, penicillamine		
	amiloride, bumetanide, dyazide		
Diuretics	eplerenone, frusemide, hydrochlorothiazide, indapamide		
	mannitol, metolazone, moduretic		
	spironolactone		
	amiodarone, atropine, disopyramide		
Anti-arrhythmic	dronedarone, flecainide, mexiletine		
	procainamide, propafenone, quinidine		
	atenolol, bisoprolol, carvedilol		
Beta-adrenoceptor blocking drugs	esmolol, labetalol, metoprolol		
	nadolol, propranolol, sotalol		
	captopril, ambrisentan, clonidine		
	amlodipine, enalapril, bosentan		
	enalaprilat, candesartan, hydralazine		
	doxazosin, lisinopril, iloprost		
	losartan, methyldopa, irbesartan		
Hypertension and heart failure	minoxidil, nitroprusside dihydrate sodium		
••	macitentan, perindopril, sacubitril		
	phenoxybenzamine, selexipag		
	phentolamine, sildenafil, prazosin		
	telmisartan, predonium, telmisartan		
	ramipril, valsartan, terazosin		
	amlodipine, cilostazol, diltiazem		
Antianginal drugs	ginkgo biloba extract, felodipine er		
i maangmar ar ugo	ivabradine, glyceryl trinitrate		

	lercanidipine, naftidrofuryl oxalate		
	isosorbide dinitrate, nifedipine		
	isosorbide mononitrate, oxpentifylline		
	nicardipine, nicergoline, nifedipine		
	nimodipine, verapamil		
	adrenaline, dobutamine, dopamine		
Sympathomimetics	ephedrine, isoprenaline, metaraminol		
Sympactioninectes	midodrine, noradrenaline, norepinephrine		
	phenylephrine		
	argatroban, apixaban, dabigatran		
	edoxaban, enoxaparin, epoprostenol		
	heparin, nadroparin, protamine sulphate		
Anti-thrombotic therapy	rivaroxaban, sodium citrate, tinzaparin		
	warfarin, aspirin, clopidogrel		
	dipyridamole, eptifibatide, prasugrel		
	ticagrelor		
	tranexamic acid, emicizumab		
A (*0°1 * 1 (* 1 TT - / /*	factor ix/viia/viii/viii inhibitor bypassing fraction		
Antifibrinolytic and Haemostatic	prothrombin complex concentrate		
drugs	ethanolamine oleate		
	sodium tetradecyl sulphate		
	alirocumab, atorvastatin, cholestyramine		
Lipid-regulating drugs	evolocumab, ezetimibe, fenofibrate		
	gemfibrozil, rosuvastatin, simvastatin		